Общие сведения (магнетронное осаждение)

    Действие магнетронного распылителя основано на распылении материала мишени-катода при его бомбардировке ионами рабочего газа, образующимися в плазме тлеющего разряда. Основные элементы магнетронной распылительной системы - это катод, анод и магнитная система, предназначенная для локализации плазмы у поверхности мишени – катода. Магнитная система, расположенная под катодом, состоит из центрального и периферийных постоянных магнитов, расположенных на основании из магнитомягкого материала. На катод подаётся постоянное напряжение от источника питания. Основные преимущества магнетронного способа распыления – высокая скорость нанесение плёнки и точность воспроизведения состава распыляемого материала. 

    Магнетронное распыление позволяет получать покрытия практически из любых металлов, сплавов и полупроводниковых материалов без нарушения стехиометрического состава. В зависимости от состава рабочей атмосферы (долей кислорода, азота, диоксида углерода, сернистых газообразных соединений) можно получать плёнки оксидов, нитритов, карбидов, сульфитов различных материалов. Скорость конденсации при магнетронном распылении зависит от силы тока разряда или мощности и от давления рабочего газа, что определяет жесткие требования к источникам питания. Для обеспечения воспроизводимости и стабильности процесса силу тока разряда необходимо поддерживать высокой точностью. В качестве рабочей среды при магнетронном распылении используют смесь инертного и реакционных газов. Подбором парциальных давлений компонентов газовой смеси при постоянном общем давлении, поддерживаемом высокой точностью. Это, в свою очередь требует оснащение вакуумных установок насосами, обеспечивающие постоянную скорость откачки в рабочем диапазоне давлений. Состав получаемых соединений (оксидов, карбидов, нитритов) зависит от чистоты применяемых газов и распыляемых материалов, поэтому требуются сложные системы откачки газов и высокочистые материалы для распыления.

    Метод магнетронного распыления с постоянной силой тока не позволяет получать плёнки оксидов при высокой скорости распыления из за резкого окисления катода–мишени. В этих случаях целесообразнее применять высокочастотное магнетронное распыление, реализующее возможность распыление диэлектрических материалов в магнитном поле без изменения стехиометрического состава при увеличенной скорости испарения. Не смотря на некоторые преимущества непосредственного распыления диэлектриков ВЧ – магнетроном, этот способ отличается незначительной скоростью конденсации и, вследствие этого, низкой производительностью. Имеются опредёленные трудности в согласовании источника питания магнетрона с нагрузкой при работе на высоких частотах; кроме того, источник питания должен быть снабжен системой гашения дуговых разрядов, являющихся причиной нестабильности рабочих параметров магнетронной распылительной системы.

    В таблице ниже приведены скорости   осаждения   различных   материалов   и   соединений   относительно скорости осаждения меди при использовании магнетронного напыления:

Al

0.77

Ge

1.10

Sb

3.96

Al2O3

0.16

Ir

0.66

Si

0.38

Ag

2.24

Mo

0.51

SiC

0.39

Au

1.90

Mn

1.07

SiO2

0.49

Be

0.19

Nb

0.48

Sm

1.21

Bi

1.76

Ni

0.70

Su

1.41

C

0.05

Os

0.54

Ta

0.46

Co

0.62

Pb

3.76

Th

0.90

Cr

0.65

Pd

1.41

Ti

0.41

Cu

1.00

Pt

0.97

U

0.81

Dy

1.27

Rb

4.89

V

0.41

Er

1.08

Re

0.57

W

0.42

Fe

0.52

Rh

0.97

Y

1.023

GaAs

1.83

Ru

0.71

Zr

0.70